Although there is some hope that a vaccine for Swine Dysentery (SD) may become available in the near future, practical immunization against the disease has not been fully investigated. The current stage of development of vaccine for SD indicates that the efficacy has been limited to reducing losses rather than completely preventing infection. Therefore, there is an urgent need to look more thoroughly into the intricacies of problems associated with immunization of SD. In our attempt to develop a vaccine for SD, we investigated the effect of levamisole (levamisole) as an immunostimulant.

 Levamisole, widely used in veterinary and human medicine for its vermifugal properties has also shown immunostimulatory properties. From numerous studies, it was shown that levamisole increased resistance to some infections (Fichter et al., 1974; Irwin, 1975); restored humoral and cell-mediated immunity in certain instances (Vorhagen et al., 1973; Wood, 1975); reduced inflammation in rheumatoid arthritis and prevented tumor growth (Symons and Rosenthal, 1977). The purpose of the study was to determine the effect of levamisole on the immune response to oral vaccination with T. hyo- dysteriae and compare the results with its counterpart anthelmintic, Atgard.

In determining the effect of anthelmintics on the immune response to T. hyo- dysteriae, pigs 8 to 6 weeks of age were used. The pigs were vaccinated orally with 6 ml of 6000 of T. hyo- dysteriae. Pigs were vaccinated 90 days after the first injection. In the first experiment, 16 pigs were allocated to 2 groups and treated with levamisole via the drinking water. Nine pigs were vaccinated orally and were left in the same pen with 9 unvaccinated pigs to determine the mode of transmission of the organism. The pigs were housed under conditions of normal or observation infected pigs, respectively and were kept separate.

In the second experiment, 18 additional pigs of comparable ages were treated in the same manner except that they were treated with Atgard via the drinking water prior to vaccination.

During the interval between vaccination and challenge, the animals were observed 3 times a day to determine any clinical signs of SD and shedding pattern of the organism by culture method as well as by fluorescent antibody technique (FAT) as previously reported (Jenkins, 1978). During this observation period, several mild episodes of diarrhea were seen in many of the vaccinated pigs and the organism was isolated on several occasions from the same animals.

Eight weeks after vaccination, the animals were contact challenged with swine affected with acute SD along with 6 uninjected pigs served as controls. Observation for the clinical signs of SD was continued for an additional 4 weeks. Humoral and cell-mediated immune (CMI) responses were determined by methods previously described (Jenkins, 1978; Jenkins et al., 1979).

Following contact challenge with swine affected with SD, the total days of diarrhea were comparable in both anthelmintic-treated groups (one for one for the levamisole-treated and untreated groups, respectively, versus one and two for the Atgard-treated and untreated groups, respectively). In comparison, the controls (untreated swine) of comparable ages and weight had a total of 121 days of diarrhea. In addition, 95% and 88% recovery of T. hyo- dysteriae by culture method and FAT, respectively, were observed in the control group with respect to clearance of the organism, there was no significant difference in animals treated with levamisole or Atgard and later vaccinated and challenged with virulent T. hyo- dysteriae, judging by FAT (28% vs. 29%). However, significantly more animals were FAT positive in the levamisole unvaccinated group (38%) than in the Atgard unvaccinated group (25%); a difference of 13% in favor of the former. By culture method, the anthelmintic vaccinated groups were comparable (55 vs. 50%) in terms of containing the organism. However, levamisole treated unvaccinated had 20% more positive samples than the Atgard-treated pigs. It would appear that levamisole was less effective than Atgard in preventing horizontal shedding of T. hyo- dysteriae by immune animals.

With respect to the humoral responses (HAR) of the pigs after challenge, a significant difference (P < 0.05) was noted in the serologic titers of pigs treated with levamisole compared to the non-treated group (86.4 vs. 66.4). Suggesting that levamisole may have some potentiating effect on HAR. The situation was somewhat reversed in the Atgard-treated group, 120.6 vs. 140.8. However, the Atgard group was somewhat comparable to the control group, 120.6 and 140.8 vs. 160.6.

With regard to the CMI responses, there was no significant difference (P > 0.05) in the response of pigs treated with or without levamisole and vaccinated orally as judged by the agarose migration-inhibition test, migration index of 0.68 vs. 0.70, respectively. The same situation was true for the Atgard-treated group, 0.88 vs. 0.81. However, the Atgard-treated groups gave a stronger CMI response than did the levamisole-treated groups. The control animals elicited a CMI response comparable to the Atgard-treated group.

Conclusions:

In conclusion, it would appear that the attenuated vaccine reduced the number of cases of diarrhea following challenge. This was probably due to its ability to introduce a mild clinical form of the disease that subsequently led to protection. Generally, there did not seem to be any significant difference in the enhancement of suppression of the immune response in animals judging by clinical and immunologic responses.


Supported by Research Grant AML-AK-SEM-05 and USDA-FSA (MBS) #2 SO6-SO60901-00.