INTRODUCCIÓN

Desde los albores de la ganadería se reconocieron a los parásitos como unos enemigos a vencer.

Las primeras conocimientos que se tienen acerca de tratamientos antiparasitarios datan de los esfínces, los que adminisitraban mezclas de plantas naturales. Posteriormente se empezaron a usar algunas semillas, plantas y frutas como antiparasitarios dentro de estos cabe señalar el aceite de ricino, la semilla de la calabaza, nuez de aguacate, etc., etc., algunos de estos productos aumentan el pentalismo, por lo que algunos otros parásitos era expulsado sin quitar la enfermedad.

Después vino la época de los productos químicos, en la cual con gran efectividad aniquilaban a los parásitos, así como a los animales. Algunos de estos productos son el Tetracloruro de Carbono, el Tolueno, el Disulfuro de Carbono, etc., los cuales por su alta toxicidad pasaron rápidamente a la historia. Posteriormente aparecieron algunas sales, dentro de las cuales la que menos ha caído en desuso es la Piperacina.

Las Piperacinas se pueden catalogar como de corto espectro, ya que básicamente su espectro es sobre el género Ascarioidea, aunque dentro de estos también las formas histotóxicos no son eficaces.

Conforme nuevas investigaciones acerca del uso de antiparasitarios fueron haciéndose, se detectó la necesidad de ampliar el espectro de los productos y se puede decir que los primeros vermicidas de amplio espectro que aparecieron en el mercado fueron los Tetramisoles, los cuales son eficaces contra gusanos pulmonares y gástricos intestinales. Su toxicidad en comparación con los benzimidazoles y su nulo poder ovicida lo han hecho obsoleto en comparación a estas drogas.

Es importante hacer una reflexión hasta este momento debido a que diversos parásitos permanecen incrustados en la mucosa del aparato digestivo y se nutren de sangre, células y otros productos orgánicos. Es necesario que el fármaco alcance niveles en sangre, además de que tenga cierta concentración en intestino para aniquilar aquellos parásitos que no permanecen adheridos a la mucosa.

Dentro del grupo de los Benzimidazoles cabe destacar que poseen un amplio espectro, ya que atacan gusanos planos, redondos y pulmonares, además de tener algunos de ellos cierto efecto sobre F. hepatica.

Poseen además un efecto ovicida, lo que nos reduce los niveles de reinfección, además de bajar la contaminación de las zahurías. Además algunos de ellos son prácticamente áticos, ya que la DL 50% es muchas veces mayor a la terapéutica.

Hasta hace poco se le ha dado al poder ovicida la importancia que merece, ya que comúnmente se habla de la eficacia de un vermicífugo de acuerdo al número de parásitos adultos que el producto elimina, por lo que llevaba a subvalorar la contaminación que existe en praderas y zahurías, lo que potencialmente es muy peligroso.
Dentro del grupo de los benzamidazoles, el Oxendazole posee una más larga duración de sus niveles en sangre, por lo que su contacto con los parásitos es mayor, lo que exacerba su poder ovicida y antiparasitario.

El Oxendazole es un producto que pertenece al grupo de los benzamidazólicos carbonatados. Su solubilidad en agua es bajo, al igual que los demás antiparasitarios de su grupo.

La fórmula general es:

\[C_{15}H_{13}O_3N_3S \]

Su mecanismo de acción contra los parásitos parece ser similar a otros compuestos de su grupo, interfiriendo en el metabolismo anaeróbico de los parásitos y más específicamente en el sistema reductor de fumaratos.

Aunque en algunas cepas de contortus en bovinos que son resistentes a otros benzamidazoles, con Oxendazole son susceptibles, lo que parece indicar algún otro mecanismo de acción.

METABOLISMO DEL OXENDAZOL

El compuesto se absorbe a nivel de estómago y a las 8 horas se encuentra en su mayor parte empezando una declinación fuerte a las 60 horas.

El mecanismo de excreción es por la orina (42%) y por las heces (54%).

Algunos reportes más relevantes que existen sobre el Oxendazole serán sintetizados a continuación:

- Thomas (1) Reporta haber utilizado hasta tres veces la dosis terapéutica recomendada sin ningún cambio en la salud de los animales.
- Averkin (2) Reporta su efectividad como antiparasitario de amplio espectro en borregos, porcinos, equinos, bovinos y ratones, además de no producir ningún signo de toxicidad aumentando 5 veces la dosis recomendada.
- Corvin (3) Reporta la utilización de Oxendazole en dosis de 0,3 y 10 mg/kg de peso en perros infectados por escares expulsados en las heces presentaban malformación en la cápsula y en su estructura interna.
- Corvan (4) Reporta una efectividad del Oxendazole sobre Hydrofluinylus rubra del 90 al 98.3% y del 96.7 al 99.7% sobre Oesophagostronon spp con una dosis de 5 mg/kg. También hace comparaciones con otros antiparasitarios.
- Corvia (5) Reporta los siguientes porcentajes de infestaciones parasitarias: Oesophagostronon citatum (10%), Anseris Sum (99.2-100%) en infecciones de N. ax y N. pyrudentectus (92.7-99.5%). Los resultados fueron variables en F. suis.
Kosakiewicz (6) reporta buenos resultados en infecciones mixtas también.

CONCLUSIONES

En la mayor parte de los trabajos presentados hasta la fecha, el Oxendazole ha demostrado su alta efectividad, además sí consideramos que es uno de los benzimidazoles más baratos del mercado, es conveniente tenerlo en mente para su uso.

(6) Efficacy of Oxendazole in planned control of helminthiasis in pigs cc (4) B. Kosakiew, Wicks, M. Cajda, J. Meszewska Institute of Veterinary Hygiene 60-165 Poznan, Poland.