AISLAMIENTO DE Erysipelothrix rhusiopathiae
A PARTIR DE MUESTRAS DE ALIMENTO.

Jiménez, G.E., Galván, P.R., Ramírez, H.G. y Haro, T.M.
Departamento de Producción Animal, Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Exterior de Ciudad Universitaria, Coyoacan, México, D.F. c.p. 04510.

RESUMEN
Se realizó el aislamiento de Erysipelothrix rhusiopathiae de 80 muestras de materias primas y alimentos terminados, en donde se obtuvo un mayor porcentaje de contaminación en la harina de carne (4%) que en harina de pescado y alimento en polvo (1%), sin poderse aislar en alimento peletizado.

INTRODUCCIÓN
La erisipela es una enfermedad contagiosa de alta morbilidad y baja mortalidad, cuya distribución es amplia a través del mundo. Este padecimiento es provocado por Erysipelothrix rhusiopathiae que tiene como característica la de encontrarse en una gran variedad de animales, tales como: peces tanto de agua dulce como salada, ganado vacuno, pavos y patos.

En condiciones naturales se ha observado que el organismo se mantiene vivo durante 12 días a la luz directa del sol; por tal motivo es posible encontrarlo como contaminante en las harinas que son utilizadas en la elaboración de alimentos para cerdos, debido a su resistencia a condiciones ambientales adversas, pues requiere más de 60 °C para ser destruido (1). Por tal motivo, es importante establecer controles de calidad de materias primas utilizadas en la fabricación de alimentos balanceados, sobre todo cuando estas son de origen animal.

OBJETIVO
Determinar, a través del aislamiento la contaminación con Erysipelothrix Rhusiopathiae de materias primas, así como de alimento terminado.

MATERIAS Y MÉTODOS
Se utilizaron 80 muestras de diferente procedencia, de las cuales 20 eran de harina de carne, 20 de harina de pescado, 20 de alimento balanceado en polvo y 20 de alimentos balanceados en pellets.

Estudio bacteriológico. De cada muestra se tomaron 50 g. y se colocaron en 30 ml de solución buffer fosfatazada al 0.1 M esteril. Posteriormente se centrífugaron 10 minutos a 1600 rpm. El sobrenadante fue decantado a 250 ml de medio líquido de Packer modificado y se incubó durante 48 horas a 37 °C. Despues se tomó 0.1 ml y se sembró en placas de medio sólido de Packer y se incubó a 37 °C durante 48 horas en una atmósfera de velobiosis. A las colonias sugestivas de Erysipelothrix rhusiopathiae se les realizó la tinción de Gram y pruebas bioquímicas para su identificación.

El medio líquido se mantuvo a 5 °C durante 5-7 días y después se realizó subcultivo en medio sólido de agar (2).

RESULTADOS
Del las 80 muestras se obtuvieron los siguientes aislamientos

<table>
<thead>
<tr>
<th>TIPO DE ALIMENTO</th>
<th>AISLAMIENTO</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harinas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de carne</td>
<td>4/20</td>
<td>20</td>
</tr>
<tr>
<td>de pescado</td>
<td>1/20</td>
<td>5</td>
</tr>
<tr>
<td>Alimento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>en polvo</td>
<td>0/20</td>
<td>0</td>
</tr>
<tr>
<td>en pellets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSIÓN
Se encontró un 6% de aislamiento de Erysipelothrix rhusiopathiae siendo un porcentaje más elevado del que reporta Wood, en donde se encontró un 2.5% de positividad de 600 muestras trabajadas (3). Existe una gran variación entre harinas y pellets, ya que en estos últimos en su proceso de manufactura, existe una esterilización parcial de los ingredientes, pudiendo explicar el porqué del aislamiento negativo en pellets.

En la harina de carne, en donde se utilizan animales de muy diversa procedencia, se corre un riesgo más alto de contaminación, situación apoyada por los resultados obtenidos en este trabajo.

LITERATURA CITADA