ESTUDIO SEROLÓGICO PARA DETERMINAR ANTICUERPOS CONTRA LEPTOSPIRA INTERROGANS EN MUESTRAS REMITIDAS AL DEPTO. DE PRODUCCIÓN ANIMAL: CERDOS EN LOS ÚLTIMOS 12 AÑOS

*Gerardo Ramírez¹, Elda Jiménez¹, Alejandra Mercadillo, ¹, Esperanza Galván¹,

Mario Haro¹, Eduardo Negrete ¹ y María de Jesús Martínez S.J.¹

Depto. de Producción Animal: Cerdos, F.M.V.Z.-U.N.A.M.

INTRODUCCION. La leptospirosis es una enfermedad infecciosa reconocida mundialmente que afecta a los animales domésticos, silvestres y al hombre. La leptospirosis en cerdos tiene un periodo de incubación aproximadamente de dos días a dos semanas, sequido de un periodo de leptospiremia de 14 días, la cual en cerdos y en hembras no preñadas es benigna o inaparente, y en donde solo existe ligera fiebre e inapetencia. En cerdas preñadas debido al paso transplacentario del germen durante la fase leptospiremica, la infección se manifiesta por abortos, mortinatos, nacimiento de lechones débiles; también se puede observar reducción de la fertilidad en hembras y machos, lo que ocasiona pérdidas en la economía porcina. La desaparición de las leptospiras de la sangre generalmente corresponde con la aparición de anticuerpos detectables; en este tiempo, dependiendo del huésped y del serotipo infectante, las leptospiras pueden localizarse en el riñón, eliminándose por la orina, siendo esta la principal fuente de transmisión. La alcalinidad del agua y del suelo, así como la humedad, conservan las leptospiras en el medio externo (2, 3). Las leptospiras poseen un antígeno proteico (filamento axial), un antígeno poliosido (pared celular) y un antígeno de superficie de naturaleza desconocida; antígenos que provocan la formación de anticuerpos detectables por cualquiera de las siguientes pruebas serológicas: 1.-Prueba de aglutinación en placa (macroaglutinación), en donde se utiliza un antígeno inactivado, formalinizado, cuya ventaja es la de ser fácil y rápida de realizar. Títulos de 1/40, a uno o más serotipos se considera positivo. 2.- Prueba de fijación de complemento, es menos especifica que la anterior, y los anticuerpos solo se detectan por un periodo muy corto después de la infección. 3.- Prueba de aglutinación microscópica. Esta es la más especifica y exacta, ya que nos puede identificar el serotipo infectante, siendo más sensible debido a que se utilizan leptospiras vivas como antígeno. Detecta anticuerpos IgM desde los 10-14 días después de la infección inicial o del aborto (1, 4).

OBJETIVOS

- Determinar la incidencia de sueros positivos por cada año de estudio.
- 2.- Determinar los serotipos más comunes en nuestro país.

MATERIAL Y METODOS. Se utilizaron 10,897 sueros de porcino enviados al laboratorio del Departamento de Producción Animal: Cerdos de la Facultad de Medicina Veterinaria y Zootecnia de la UNAM. Las cepas de leptospiras usadas como antígeno se mantiene en medio stuart con 10 % de suero de conejo estéril e inactivado a 56 C durante 30 minutos, e incubados a 28-30 C durante 7 días. Posteriormente se examina a campo obscuro y en donde se debe tener una densidad de 200 microorganismos por campo, libre de contaminación y aglutinación. Se prepararon series de diluciones dobles del suero con solución salina fisiológica estéril para obtener diluciones de 1/50 hasta 1/6400 (o más alto para obtener el titulo final) en placas de 96 pozos, en donde se colocó 0.1 ml de cada dilución y 0.1 ml del antígeno. Inmediatamente se colocaron en cámara húmeda y se incubó durante 2-3 horas a 28 C. Después de este tiempo se examinó una gota de cada dilución a través del microscopio de campo obscuro. Interpretación. Se reconoció como reacción positiva cuando el 50% o más de las leptospiras estaban aglutinadas en la dilución 1/100 en animales no vacunados y títulos que excedían de 1/400 en animales vacunados (dentro de las 12 semanas después de la vacunación y a los serotipos incluidos dentro de la vacuna) (4).

RESULTADOS

Serovariedad	Porcentaje											
	198	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
L. australis	4.68	2.68	1.63	1.9	5.46	7.06	8.84	9.17	9.42	11.63	6.75	4.46
L. autumnalis	12.1	21.2	24.2	13.1	12.1	25.8	22.5	13.2	7.75	9.37	4.21	5.74
L. ballum		0.31	1.25		1.01	5.25	2.17	1.07	0.23	0.59	0.2	0.99
L. bataviae				100	0.23	0.72	0.5	2.38	0.83	1.27	0.2	0.3
L. bratislava					1.17	2.8	1.83	4.52	3.46	0.88	15.84	28.81
L. canicola	5.74	5.05	8.53	3.31	11.2	16	14.2	9.17	9.78	14.26	15.45	14.95
L. grippotyphosa	1.06	0.15	1.75	3.71	5.78	11.2	5.5	8.58	12.5	6.15	9.09	6.14
L. hardjo	6.38	4.73	15.1	9.83	14.7	11.2	2.33	3.45	2.14	1.56	0.39	0.89
L. hebdomadis	BUL			105171	1110	1	0.16	0.71	0.23	0.39	0	0
L.icterohaemorrhagiae	11.5	12.3	25.5	16.7	23.5	45.5	4.84	3.69	7.99	3.71	8.02	16.04
L. panama			Same.		E zaih				and a	9.28	16.91	17.72
L. pomona	45.1	40.1	51.8	34.2	40.5	58.4	65.9	58.2	70	53.71	38.91	29.9
L. pyrogenes	3.4	0.78	8.78	3.31	5.31	2.08	2.5	2.5	4.77	0.88	0.78	0.2
L. sejroe		0.15			0.15	1.29	11.7	12.3	3.1	0.88	1.96	23.96
L. shermani	20.9	22.7	37.3	28	37.6	50	24	13.9	7.27	21.87	16.72	16.64
L. tarassovi		: [354]	0.12	0.1	0.78	3.17	1.66	1.78	3.93	28.71	16.52	7.23
L. wolffi	5.74	3.79	2.63	6.02	1.71	8.64	19.5	11.3	14.1	10.25	2.06	6.34
Total de sueros	470	633	797	996	1280	1388	599	839	838	1024	1023	1010

^{*} los sueros pueden ser positivos a uno o varios serotipos

Como se puede observar de los 10,897 sueros sospechosos de leptospirosis porcina remitidos al Departamento de Producción Animal: Cerdos de la F.M.V.Z.- U.N.A.M., las serovariedades que se presentaron con una mayor frecuencia son: *L. pomona, L. shermani, L. icterohaemorrhagiae, L. autumnalis , L.canicola.* En 1995 se detectan anticuerpos contra *L. panama* y en 1996 se incrementan los de *L. bratislava*.

BIBLIOGRAFIA.

- 1. Aaron, D.: Laboratory diagnostic problems in areas of multiple leptospirosis <u>Proc 6Th Int.</u> Congr. <u>Trop. Med.</u> and <u>Malar 4: 447-453 (1970)</u>.
- 2. Akkerman, J.: Incidence of abortion and sterility in swine in the Netherlands due to infection with <u>leptospira hyos</u>. <u>Bull Off. Int. Epiz.</u> 66: 819-866 (1966).
- 3. Alexander, A.: Leptospirosis swine. Bull Off. Int. Epiz. 61: 273-304 (1964).
- Manual sobre Métodos de Laboratorio para Leptospirosis. Nota pecuaria No. 9 Buenos Aires, Argentina (1968).

MATERIAL Y METODOS. Se uffizaron 10,897 sueros de pereiro anviados al laboratore del

1,100 en animales no vacunados y titulos que excedian de 1/400 en animales vacunados (dentro