

Asociación Mexicana de Médicos Veterinarios Especialistas en Cerdos XXXVI Congreso Nacional Querétaro 2001 Julio 25 – 29 de 2001

CLASIFICACION MOLECULAR DE CEPAS DEL VIRUS DE LA FIEBRE PORCINA CLASICA EN MEXICO

Socci EG¹*; Carrera SE¹; Macías GM²; Diosdado VF¹; Arriaga, C.¹, Estrada S.E.¹; Morilla GA¹

¹CENID-Microbiología, INIFAP-SAGAR. km. 15.5 carretera México-Toluca, C.P. 05110, México D.F. Tel: (5) 5700616., Fax: (5) 5704073.

INTRODUCCION

La fiebre porcina clásica es una enfermedad altamente contagiosa que afecta a cerdos de todas las edades y que causa grandes pérdidas económicas a la porcicultura nacional. El virus causante de la enfermedad pertenece a la familia Flaviviridae y al género Pestivirus el cuál también incluye al virus causante de la diarrea viral bovina (DVB) y ambos guardan una relación antigénica y estructural muy estrecha. En el laboratorio de biología molecular del CENID-Microbiología del INIFAP se logró establecer la técnica de RT-PCR que permite diferenciarlos (Carrera et al., 2000a y 2000b).

En otros países, la RT-PCR ha sido ampliamente utilizada para la amplificación de diferentes fragmentos del genoma del virus de la FPC y seguida de secuenciación de ácidos la tipificación genética de un gran número de cepas y es nucleícos ha permitido considerado un método de mayor precisión que los métodos antigénicos. Las regiones del genoma viral que han sido secuenciadas en estos estudios son principalmente tres: la del gen que codifica para la glicoproteína E2, la del que codifica para la polimerasa y la región no codificante del extremo 5' (Lowings et al., 1994, 1999; Fritzemeier et al., 1999; Stadejek et al., 1997; Hofmann and Bossy, 1998; Vilcek and Paton., 1998; Bartak and Greiser-Wilke., 2000; Greiser-Wilke et al., 2000). La clasificación actual de las cepas de virus de la FPC los engloba en tres grupos con tres o cuatro subgrupos: 1.1, 1.2, 1.3; 2.1,2.2,2.3; 3.1, 3.2, 3.3, 3.4. El grupo 1 está representado por las cepas Brescia y Alfort/187 e incluye antiguas cepas vacunales y cepas de laboratorio aisladas hasta los 80's en Europa y Estados Unidos, y nuevos aislados de Asia, América del Sur y Rusia; el grupo 2 incluye casi todos los nuevos virus aislados después de 1985 en el este y oeste de Europa y algunos aislados de Asia; hasta ahora, los virus del grupo 3 parecen estar restringidos a Asia. Por otra parte, los estudios basados en esta tecnología también han sido muy útiles para demostrar: 1) la diseminación del virus de FPC; 2) la transmisión entre cerdos domésticos y silvestres; 3) la transmisión a través de fronteras nacionales; 4) brotes de diferente virulencia asociados con virus estrechamente relacionados; 5) persistencia local de variantes particulares; 6) Diferenciación entre virus vacunales y de campo (Paton et al., 2000).

² Centro Nacional de Diagnóstico en Salud Animal. Santa Ana Tecámac km. 37.5 carretera México-Pachuca.

Asociación Mexicana de Médicos Veterinarios Especialistas en Cerdos XXXVI Congreso Nacional Querétaro 2001 Julio 25 – 29 de 2001

En este estudio se presenta información acerca de los resultados preliminares de la clasificación de las cepas vacunales y algunas de campo que se encuentran en nuestro país.

METODOLOGIA

Se utilizaron tres cepas vacunales (PAV-250, PAV-1 y Minnesota, amablemente proporcionada por Laboratorios Boehringer Ingelheim Vetmedica) y tres cepas aisladas de brotes de campo. Para la extracción de ARN total de las muestras se utilizó el reactivo Trizol® siguiendo el protocolo descrito por el fabricante. La obtención del ADN complementario y la amplificación por PCR se llevó a cabo en un solo tubo con la utilización de los oligonucleótidos: 5'- ATA TAT GCT CAA GGG CGA GT-3' Y 5'-ACA GCA GTA GTA TCC ATT TCT TTA-3', que amplifican un fragmento de 308 pb correspondiente al gen que codifica para la glicoproteína E2. Los productos de 308 pb, se reamplificaron, purificaron y secuenciaron. Las secuencias obtenidas fueron analizadas mediante el programa *DNAman*.

RESULTADOS Y DISCUSIÓN

Se logró la amplificación, reamplificación y purificación del producto de 308 pb a partir de las seis cepas trabajadas.

La alineación de las secuencias de nucleótidos de la cepa vacunal PAV-250 con las tres cepas de campo mostraron una homología de entre 98 y 99% por lo que no se pudieron distinguir entre sí. Este resultado concuerda con el obtenido con la cepa PAV-250 por Paton *et al.* (2000). Se van a analizar otras regiones del genoma viral de las cepas trabajadas para construir los árboles filogenéticos correspondientes y determinar a que subgrupo pertenecen. Por otra parte es muy importante analizar un mayor número de cepas de campo para establecer si se trata de una o varias cepas del virus de la FPC las que se encuentran circulando en México y dar un seguimiento epidemiológico a los diferentes brotes.

REFERENCIAS

Bartak P, Greiser-Wilke I.2000. Genetic typing of CSF virus isolates from the territory of the Czech Republic. Vet. Microbiol. 77, 59-70.

Carrera SE., Socci EG., Diosdado VF., Arriaga DC., Morilla GA. Establecimiento de la técnica de RT-PCR para el diagnóstico de la fiebre porcina clásica. Memorias XXXV Congreso de la Asociación Mexicana de Veterinarios Especialistas en Cerdos (AMVEC), Acapulco Gro. 2000.

Asociación Mexicana de Médicos Veterinarios Especialistas en Cerdos XXXVI Congreso Nacional Querétaro 2001 Julio 25 – 29 de 2001

- Carrera SE., Socci EG., Diosdado VF., Arriaga DC., Morilla GA. Establecimiento de la técnica de RT-PCR para el diagnóstico de la fiebre porcina clásica. XXXVI Reunión Nacional de Investigación Pecuaria. Hermosillo Son. 2000.
- Fritzemeier J, Greiser-Wilke I, Depner K, Moenning V. 1999. The epidemiology of CSF in Germany between 1993 and 1997. Report on annual meeting of the national swine fever laboratories, Vienna, Austria 16-17 June 1997, Document V1/7888/97, Commission of the European Communities pp. 33-35.
- Greiser-Wilke I, Fitzemeier J, Koenen F, Vanderhallen H, Rutili D, De Mia GM, Romero L, Rosell R, Sánchez-Vizcaíno JM, San Gabriel A. 2000. Molecular epidemiology of a large classical swine fever epidemic in the European Union in 1997-1998. Vet. Microbiol. 77, 17-27.
- Hofmann MA, Bossy S. 1998. Classical swine fever in 1993 in Switzwerland: molecular-epidemiologic characterization of the virus isolated. Schweiz. Arch. Tierheilkd. 140, 365-370.
- Lowings JP, Paton DJ, Sands JJ, De Mia GM, Rutili D. 1994. Classical swine fever: Genetic detection and análisis of differences between isolates. J. Gen. Virol. 75, 3461-3468.
- Lowings JP, Ibata G, , De Mia GM, Rutili D, Paton DJ. 1999. Classical swine fever in Sardinia: epidemiology of recent outbreak. Epidemiol. Infect. 122, 553-559.
- Paton DJ, McGoldrick A, Greiser-Wilke I, Parchariyanon S, Song JY, Liou PP, Stadejek T, Lowings JP, Björklund H and Belak S.2000. Genetic typing of classical swine fever virus. Vet. Microbiol. 73: 137-157.
- Stadejek T, Vilcek S, Lowings JP, Ballagi-Pordany A, Paton DJ and Belak S. 1997. Genetic heterogeneity of classical swine fever in central Europe. Virus Res. 52: 195-204.
- * Este trabajo es parte de la tesis de maestría del primer autor. Estudio Financiado por la Fundación Guanajuato Produce A.C.