Fundamentos del PRRSv (Virus del Síndrome reproductivo y respiratorio del cerdo) y el uso de la Vacuna Viva para el control del virus de PRRS

MVZ. Edgar Díaz Estrada
Boehringer Ingelheim Vetmedica

Introducción

El control del virus de PRRS involucra varios factores, que incluyen el conocimiento y entendimiento de las diferentes presentaciones clínicas y tipos del virus de PRRS, la epidemiología de la circulación viral en la granja, el papel y las limitaciones de la inmunidad, y el desarrollo de expectativas razonables en las medidas de control.

El virus de PRRS posee características únicas: Un establecimiento lento de la inmunidad protectora así como una replicación extensa del virus en el animal, además de la habilidad de generar poblaciones con diferentes niveles de exposición e inmunidad hacia aislamientos virales particulares, y finalmente la habilidad de varios tipos de aislamientos virales de persistir en una población en un tiempo determinado. Estas características aumentan el grado de complejidad para el control de PRRS en los hatos de cerdos. El objetivo de este documento es lograr un entendimiento acertado de estas características y sus implicaciones, para simplificar el control de PRRS a través de un proceso, y entender como la vacuna puede ser aplicada para mejorar el control de los efectos clínicos y económicos de la circulación viral.

Historia y presentación del virus de PRRS

El virus de PRRS es un virus RNA perteneciente a la familia arteriviridae. Como su nombre lo infiere, puede desarrollar una infección del tejido vascular, especialmente en lechones peri natales. La preferencia predominante para la replicación es en varias líneas de macrófagos ejemplo, Células de Kupfer, macrófagos pulmonares intra vasculares y macrófagos alveolares, y es responsable de las características clínicas de la enfermedad.

El virus de PRRS se detectó por primera vez en Norte América al final de 1980 como una enfermedad epidémica reproductiva (anorexia, abortos, partos prematuros, aumento de lechones nacidos muertos y momificados) seguida por problemas respiratorios en destetes y engordas. La evidencia serológica sugiere que el virus a estado presente en Norte América por casi una década antes de que se reconociera la enfermedad clínica (Sanford 2000).

El virus se replicó e identificó a principios de 1990 por investigadores en Holanda (IDDLO) y Estados Unidos (Boehringer Ingelheim Vetmedica). El virus de PRRS clásico aislado y recobrado en este periodo, produjo en estudios controlados solamente una enfermedad moderada en hembras gestantes, aunque se logró producir muertes fetales (ejemplo. 10% reducción en lechones nacidos vivos y 20% menos de lechones destetados por camada).El periodo de mayor susceptibilidad a pérdidas reproductivas es el último tercio de la gestación, de los 90 días en adelante.
De manera similar, en estudios controlados se observan pérdidas por problemas respiratorios en cerdos sanos (libres de Mycoplasma hyopneumoniae, Streptococcus suis, etc). A menudo los cerdos experimentales desafiados desarrollaban neumonía con 20% o menos de daño pulmonar, y sin mortalidad. Los efectos sistémicos por la replicación viral, como fiebre, linfo adenopatía y leucopenia fueron observados.

Un rango amplio de aislamientos virales han sido encontrados en Norte América y Europa. En este último lugar, de manera recientemente, se han identificado un rango más amplio de aislamientos, todavía con las presentaciones clínicas clásicas.

La virulencia en ambas presentaciones, respiratoria y reproductiva, puede ser más severa al relacionarse con la edad. Las hembras en el último tercio de la gestación y los lechones más jóvenes (incluidos cerdos en estado fetal) son los más susceptibles a la enfermedad clínica. Conforme los cerdos transitan por la sala de parto, el destete y engorda, las pérdidas clínicas asociadas con la infección del virus de PRRS decrecen, pero entonces la presencia y relación con otros patógenos por ejemplo, Mycoplasma hyopneumoniae, Fiebre Porcina, Streptococcus suis, Circo virus porcino tipo 2, Influenza y Salmonella sp, pueden incrementar las pérdidas cuando existe una co infección junto con el virus de PRRS.

La técnica de PCR es una herramienta de diagnóstico que fue desarrollada, para identificar las características genéticas de los aislamientos virales basada en el patrón de restricción de la enzima de digestión (ORF) 5, la cual analiza aproximadamente 6% del genoma viral. Esta porción del virus fue elegida para su valoración debido a que representa a la proteína de la membrana externa del virus. Esta área del virus puede representar la porción mas heteróloga o variable del mismo.

La técnica utiliza una enzima de Restricción del fragmento largo de polimorfismo (RFLP), e involucra el digerir esta porción del virus con tres enzimas. El patrón resultante de cortar estas tres capas nos da un patrón digital de identificación. Se aprecian entonces varios patrones. De cualquier modo, el virus prototipo de campo VR-2332, y la vacuna desarrollada apartir de éste último (Ingelvac PRRS MLV; Boehringer Ingelheim Vetmedica, Inc) tiene un patrón único de 252 lo que permite una diferenciación limitada de la vacuna a las de campo y de otros aislamientos.

Se debe tener cuidado para no sobre interpretar ya sea el RFLP o la secuencia resultante de este segmento del virus. No existe correlación entre las características genéticas del virus y aspectos de patogénesis; ya sea virulencia clínica o protección a través de la vacuna o a otro virus de campo. El uso de estas herramientas por el momento solo debe enfocarse para estudios epidemiológicos de los aislamientos virales que se presentan en las poblaciones en un tiempo determinado. Al tener disponible la secuencia de la porción entera de ORF 5, se puede realizar un análisis filogenético del virus presente en una granja, región o país de la misma manera que se puede realizar un árbol genealógico de nuestra familia.

A partir de 1996, un nuevo grupo de aislamientos apareció en Norte América, con una
presentación clínica más virulenta que los aislamientos iniciales. La presentación reproductiva apareció de manera mímica a los brotes originales en hatos que fueron expuestos y/o vacunados. Abortos, presentación clínica en hembras gestantes y fallas reproductivas se pudieron apreciar aun en situaciones de desafío controlado (80-100% reducción en lechones nacidos vivos y destetados por camada en hembras en condiciones controladas).

Los patrones de identificación de estos aislamientos usando RFLP fueron normalmente 142 o 144. Este patrón común de RFLP, junto con una secuencia completa de análisis de ORF 5, sugiere una fuente común de este virus. De cualquier manera, debemos decir que no todos los virus con este patrón son altamente virulentos, ya que muchos de los aislamientos clásicos detectados a principios de 1990 también tenían el patrón 142.

En este tipo de aislamientos la presentación respiratoria es más severa. En condiciones de laboratorio, se genera un daño pulmonar arriba del 50% en animales susceptibles de un grupo control desafío. Fiebre, leucopenia y otros signos sistémicos de infección (perdida de peso, etc.) también son más severos. Se detecta además mortalidad en algunos casos.

Estos virus aislados reciben el nombre de “Atípicos” para resaltar que se trata de una presentación clínica más agresiva en el desafío de laboratorio. Algunos cambios genotípicos en varias partes del genoma viral, se han detectado en estos virus, al compararlos con los aislamientos clásicos. De cualquier manera, ninguno de estos ha sido identificado para predecir la virulencia o bien relacionado con esta. Hoy en día, estos tipos de aislamientos altamente virulentos han sido reportados exclusivamente en Estados Unidos y Canadá, tal vez dando indicio de una fuente común de estos aislamientos limitada a estos dos países.

Debido a que es un virus RNA, el virus de PRRS comparte la característica común de variaciones comunes en la replicación viral, generándose un vacío genético (pequeños cambios en la secuencia del virus) y un cambio genético (grandes cambios, normalmente debidos a la recombinación de dos o más virus en un nuevo aislamiento potencial). La gran mayoría de estos “nuevos” tipos de virus no sobreviven fácilmente y mueren dentro de la misma población. Permitiéndose una recirculación continua del virus de campo. La introducción de nuevos virus con virulencia similar (velocidad de replicación/ habilidad de replicación) también puede incrementar el riesgo de cambios en el genoma viral. Los aislamientos virales que poseen dicha habilidad a una velocidad similar o mayor que el de una célula co-infectada tienen mayor oportunidad de permitir que ocurran cambios genómicos. La persistencia de estos aislamientos en la población, y la diseminación a otros cerdos puede entonces llevarnos a un nuevo aislamiento viral que se disemine ampliamente.

Como resultado de esto, los puntos claves para el control del virus de PRRS incluyen:

- Prevenir la introducción de nuevos aislamientos virales en una población
- El uso de técnicas de manejo para reducir o prevenir la circulación de los virus
residentes en la población.
• El desarrollo de poblaciones con una inmunidad homogénea, (ejemplo la desarrollada por el proceso de vacunación.

Conceptos claves de la inmunidad

La inmunidad al virus de PRRS es compleja; el inicio de la inmunidad protectora contra la infección por el virus de PRRS es lento. Cuando se combina el lento desarrollo de inmunidad, con una replicación a largo tiempo en un animal determinado, seguramente genere una excreción continua del virus. A menudo, algunos individuos pueden permanecer sin exponerse a un determinado aislamiento viral en una población, denominando a este efecto como el de sub-poblaciones de animales expuestos e inmunizados en un mismo espacio físico-aéreo. (Dee 1995). La protección necesaria para poder reducir los efectos clínicos respiratorios en cerdos en la línea de producción, parece ser menor y de larga duración, pero a su vez mayor que la requerida para prevenir la exposición en útero de lechones, ya que la dosis de desafío es menor en lechones jóvenes.

Debido al inico lento de la inmunidad protectora con el virus del PRRS, frecuentemente los lechones no pueden desarrollar mecanismos de defensa encaminados a controlar la replicación viral hasta 4 semanas o más de la exposición inicial. Es esta intensidad de la replicación la que está asociada con los efectos clínicos del virus del PRRS, por ejemplo, la reducción en la ganancia diaria de peso (ADG) en lechones se relaciona con el nivel y duración de la viremia, (Stahly 2000). En las hembras, la habilidad para prevenir la infección de lechones en el útero puede tardar 90 días o más para alcanzar los niveles más altos de protección (Mengeling 1996).

Inicialmente se pensaba que la duración de la inmunidad era de por vida (Lager 1996). Animales expuestos a aislamientos clásicos del virus de PRRS (NADC-8), y posteriormente desafíados en el último tercio de la gestación, no denotaron problemas clínicos en el tracto reproductivo durante casi dos años.

El término “inmunidad esterilizante” recientemente se a puesto de moda al indicar que una respuesta inmune puede por completo prevenir la sub-secuente exposición a un aislamiento del virus de PRRS por lo menos seis meses, de su contacto inicial, lo cual es el tiempo suficiente para permitir que se detenga la circulación viral dentro de una población

La dosis viral de desafío afecta la severidad de la enfermedad en animales susceptibles o con anticuerpos maternos. Animales con inmunidad materna desafíados con 2 logs de virus no replicaron el virus en un periodo de monitoreo de tres semanas (Morrison 1998). En el desafío de 3 log se tuvo un retraso en la replicación, mientras que a un desafío de 4 log se apreció una clara replicación del virus inmediatamente después del desafío; así mismo se incrementó la dosis del virus vacunal da como resultado incremento de los niveles de protección al desafío heterólogo (Roof 2002). En ese trabajo al utilizar una cepa altamente virulenta, lechones 100% susceptibles que recibieron una dosis parcial de

—169—
Vacuna no presentaron protección al desafío (>50% lesiones pulmonares). Los lechones con dosis completa resultaron significativamente más protegidos que los controles (<5% lesiones). Al utilizar vacuna viva modificada en lechones con inmunidad materna, la importancia de la dosis se magnifica al combinar los dos anteriores hallazgos.

La virulencia relativa de los diferentes aislamientos del virus de PRRS se puede medir con modelos de co-infección, o medir el título del virus en el pico de la replicación en el cerdo. Mientras más alto el título del virus, mayor oportunidad de crecimiento en el cerdo. A mayor virulencia más efecto clínico. Adicionalmente, los tipos más virulentos se replican con más preferencia contra los aislamientos de baja virulencia. Cuando, un virus clásico o moderado se inocula con 40 partículas virales y al mismo tiempo un aislamiento atenuado de vacuna a 400 millones de partículas (Ingelvac PRRS MLV), el virus virulento sobrepasa los 10 millones con bastante ventaja contra el virus vacunal, después de 7 días de la inoculación, sólo el tipo virulento se logró realinear de los lechones.

Un trabajo reciente en la Universidad Estatal de Carolina del Norte (McCaw 2002) ha demostrado ampliamente la importancia de la virulencia relativa en la duración de la inmunidad protectora. Para lo cual se expusieron repetitivamente cerdos a aislamientos de virus de campo altamente virulentos durante un determinado periodo de tiempo. A los 90 días de gestación, los animales nuevamente recibieron una dosis baja del mismo virus de campo. Cerca del 40% de los cerdos todavía podían replicar el virus, como confirmación se realizó la prueba de PCR, después de más de 5 exposiciones previas al mismo aislamiento. Los animales replicaron el virus significativamente menos que los animales susceptibles, pero finalmente la replicación del virus ocurrió. Este trabajo contrasta con los estudios de infecciones tempranas con aislamientos clásicos sugiriendo que la inmunidad puede ser de por vida. La importancia de la virulencia relativa parece ser el factor clave para entender como la inmunidad homologa y la protección asociada puede diferir entre aislamientos virales. La aplicación de programas de control puede ser ampliamente afectada por esta relativa habilidad del virus para replicarse, aun con inmunidad protectora de por medio.
Inmunidad Reproductiva

Como lo mencionamos, se tienen dos modelos distintos de enfermedad para el virus de PRRS. La protección al feto o la del lechón en útero, representan el reto más importante en el control de PRRS. Por lo que es indispensable considerar la cantidad de tiempo que se necesita para desarrollar inmunidad a la enfermedad, así como el incremento relativo en la severidad de la enfermedad relacionado con la disminución de la edad del lechón.

El cordón umbilical juega un papel trascendente en la infección in utero. La muerte fetal puede suceder debido a hipoxia al comprometerse el flujo de sangre debido a la inflamación y necrosis del cordón umbilical. La lesión principal es Arteritis, y el virus de PRRS se puede detectar en dicha lesión en el cordón umbilical.

La infección vertical en la edad peri natal puede ocurrir de forma separada a la exposición en útero. Así como lo secreción oro nasal, el calostro puede contener virus inefectivo. Se puede encontrar virus y lesiones asociadas en animales muy jóvenes, principalmente en hígado o células intra vasculares del pulmón. Al madurar los macrófagos alveolares del tracto respiratorio, la infección en el destete o posterior al mismo, (alrededor de las 3 semanas de edad) se torna predominantemente a una presentación respiratoria debido a una neumonía intersticial asociada con la infección de estas células.

La infección post destete se presenta principalmente con una forma clínica respiratoria. Las infecciones secundarias pueden influir con otros signos clínicos, por ejemplo lesiones del SNC y enfermedades como Fiebre Porcina, Strep suis o Haemophilus parasuis. Las hembras no gestantes adultas son más resistentes a los signos clínicos asociados con la infección, aunque pueden eliminar el virus en secreciones por períodos de 3 o más meses. Los semientales pueden eliminar a través del semen el virus intermitentemente, en niveles suficientes para infectar las cerdas por al menos 90 días post desafío.

El impacto de la virulencia relativa queda claramente demostrada con la diferencia en lechones nacidos vivos y destetados por camada, esto en estudios experimentales usando virus clásicos y altamente virulentos. Cuando se utilizan aislamientos de virus clásicos, como los presentados en México, cerdos control (no-vacunados) tiene perdidas en lechones nacidos vivos y destetados por camada de aproximadamente 20%. En hembras vacunadas antes del servicio, se ha notado una protección casi completa al no tener diferencias en el número de destetados, y no se logro detectar virus en >99% de los animales a partir de aislamiento viral o PCR corridos al destete o antes de este.

En desafíos altamente virulentos se tiene un impacto alto en ambos grupos, no vacunados y vacunados. Observándose aproximadamente un 80% de reducción lechones nacidos vivos y destetados por camada en el grupo control. En el grupo control puede ser frecuente no destetar cerdos. Pérdidas de un 20-30% pueden ocurrir en hembras vacunadas, los lechones de estas hembras y que sobreviven al destete, pueden presentar una apariencia de cerdos altamente vigorosos y frecuentemente libres de virus. (Mengeling 2000). Aunque las pérdidas de 30% en una granja vacunada son alarmantes,
debemos señalar que tres o más lechones adicionales destetados por camada, resultantes de un programa de control, soportado en el uso de la vacuna, aportan un beneficio económico positivo del resto del flujo de cerdos para justificar la inversión en el programa de vacunación. Pensando de manera pesimista y aun considerando la posibilidad de tener un brote por año (un incremento de 0,1-0,2 cerdos vendidos por año o bien de 10 a 20 Kg. de cerdo vendido/hembra/año es suficiente para pagar todo el programa de control soportado por el uso de la vacuna.

Inmunidad Respiratoria

El inicio de la inmunidad respiratoria comienza entre tres y cuatro semanas después de la infección (Mengeling 2000). Estudios de desafío seriados han demostrado que los cerdos vacunados a las cuatro semanas de edad no quedan significativamente protegidos al desafío de la infección con virus altamente virulento tres semanas después de la infección. Cerdos contemporáneos desafíados una semana después con el mismo virus mostraron una reducción clara en lesiones pulmonares al comparar contra cerdos controles de la misma edad. En una revisión de la literatura publicada y presentada encontramos reportes similares, relacionados con la falta de protección en lechones desafíados dos y tres semanas después de la vacunación (Halbur 1998). En situaciones en las que no se puede garantizar el tiempo suficiente para alcanzar la inmunidad previo al desafío de campo (menos de cuatro semanas de la vacunación al desafío), la vacunación de los cerdos en la línea no es recomendada.

La vacunación de los cerdos cuatro o más semanas previo al desafío ha probado protección contra desafíos de aislamientos múltiples (Halbur 2003, Dufresne 2002, y Dufresne 2003). Un análisis de 10 estudios de desafío donde se desarrolló la práctica de vacunación cuatro o más semanas antes del desafío, confirmó la recurrencia de los buenos resultados manifestados por una protección respiratoria significativa (p<0.05) para lo cual requerimos que el momento de la vacunación nos permita el desarrollo de la inmunidad. Bajo estas circunstancias se ha demostrado un impacto positivo en la G.D.P. La vacunación de animales genera un alto estándar de desempeño comparado contra controles no vacunados.

La vacunación aún en presencia de anticuerpos maternos puede ser eficiente, pero la protección se puede retarar en 1-2 semanas (Kolb 1998, Goryca 1996). Esto puede explicarse relacionado un retraso en la replicación del virus vacunal causada por la inmunidad materna. En algunos casos, se puede notar una falla en la sero conversión. La vacunación de cerdos <3 semanas de edad ha demostrado ser efectiva, pero los resultados pueden ser inconsistentes bajo estas circunstancias (Sanford 2003). La vacunación en lechones jóvenes se recomienda solo cuando la circulación del virus de campo nos obligue a vacunar en la etapa de destete. Una opción mas efectiva es el prevenir la exposición en los cerdos pre-destete, incrementar la inmunidad materna, o remover la fuente del desafío a través de prácticas como la despoblación (Dee 1995) o la aplicación de técnicas de manejo, ejemplo McREBEL (McCaw 1996).

Recientemente en México un estudio de desafío se desarrollo con un virus heterólogo
clásico de origen Americano. Obteniéndose una protección significativa cuando los cerdos se desafiaron después de tiempo suficiente para desarrollar inmunidad protectora (Lara, Díaz, 2003).

Objetivos del control de PRRS

El control del virus de PRRS se puede agrupar en tres fases:

- Estabilización – Reducir o prevenir la circulación del virus en un hato
- Eliminación – Remoción del virus de la población, donde puede ser eliminado y se puede prevenir que regrese
- Prevención – Prevenir que el virus entre nuevamente a la población

Estas fases pueden tener lugar en un solo sitio o varios sitios, dentro del mismo flujo. La opción de intentar la eliminación debe ser con un balance de costo (para alcanzar un estatus negativo) y la probabilidad de obtener cerdos negativos al virus de PRRS versus los beneficios de producción y ventas (ejemplo pie de cría negativo). Para el propósito de esta publicación, se propone utilizar Ingelvac PRRS MLV en las estrategias de control y eliminación de PRRS.

El primer paso de gran importancia es el entender el patrón de presentación de la circulación del virus de PRRS en el sistema de producción. En el muestreo del pie de cría, la fuente de semen (si es externa) y cada cuatro semanas en la línea de producción, se puede obtener puntos clave y colectarlos:

- Estimar el % de animales adultos expuestos a PRRS – para valorar cualquier riesgo a corto plazo de la vacunación.
- Determinar cuando ocurre la exposición en crecimiento – para determinar el tiempo para vacunar
- Establecer un precedente de aislamiento viral en la granja – para medir el éxito de los programas de bioseguridad y entender la epidemiología del virus de PRRS en la granja

Cualquier programa de control se debe enfocar en prevenir la entrada de nuevos aislamientos al sistema, mientras que la protección respiratoria parece ser repetible sin importar la virulencia del aislamiento, el nivel de inmunidad reproductiva se reduce con aislamientos muy virulentos. Estos tipos de virus deben de ser prevenidos y no permitir que entren al sistema, para mantener un nivel alto de estabilidad. Debemos considerar varios factores:

- Comprar animales de reemplazo de una fuente consistente
- Comprar animales de reemplazo negativos
- Comprar animales de reemplazo de una fuente con un control sistemático de PRRS
y con un programa de medidas que comparta con los compradores
- Establecer y utilizar procedimientos de bioseguridad para prevenir la introducción de virus en camiones, suplementos etc.

Las operaciones en áreas densamente pobladas son de alto riesgo, y deben prestar especial atención en prevenir la entrada de nuevos aislamientos de virus de PRRS

Estabilización – para reducir o prevenir la circulación del virus – se basa en la respuesta inmune de ambos animales a un aislamiento viral particular y la inmunidad de la población total de animales en el sitio. La diseminación lenta del virus a través de la población, junto con la posibilidad de que el animal pueda ser re-infectado con una cepa altamente virulenta dificulta el control "natural" de la circulación. En sitios con más de 1000 animales, especialmente hembras, es frecuente tener más de una cepa circulando en el sistema (Dee 1995). Cuando existen múltiples aislamientos, y/o en hatos grandes la estabilización a través del cerrado del hato y la inmunidad inducida por exposición natural es poco probable.

La inmunización de la población completa, también llamada vacunación en masa, es un segundo método para inducir una inmunidad uniforme en la población, el objetivo es el siguiente:
Estimular una inmunidad protectora de manera uniforme en todos los animales y proveer una replicación viral suficiente de virus vacunal para prevenir la circulación del virus de campo.

Varíos trabajos de campo han demostrado el valor de este método de vacunación. En un estudio realizado en Canadá (Rajik 1999), se demostró claramente que hatos que vacunaban con Ingelvac PRRS MLV destetaban regularmente lechones negativos en comparación con los hatos que no vacunaban cuyos lechones destetados eran positivos y virémicos. Estos lechones negativos entonces podían ser manejados de varias maneras para prevenir o reducir el impacto económico en el área de crecimiento.

Vacunación masiva en línea de producción y movimiento unidireccional de cerdos (MV/UF):

En esta metodología todos los animales en un sitio deben ser vacunados en masa en la fase inicial del proceso (Philips 2000). Cuando se desea la eliminación del virus de PRRS de manera rápida, especialmente en hatos grandes, se deben administrar dos aplicaciones en masa con 30 días de separación. No se permite la entrada de animales al hato durante este tiempo, y por un periodo adicional de 30 días después de la segunda vacunación. (Un total de 60 días). La vacunación puede realizarse posteriormente en intervalos establecidos, se recomienda cada 4 meses o como lo indiquen las evidencias de circulación viral, ejemplo, incrementos en el intervalo de retorno a estro o bien en el rango de abortos, o ya sea por la detección de animales positivos al virus de PRRS en la maternidad.

Esta técnica, conocida como vacunación en masa y flujo unidireccional (MV/UF) ha demostrado de manera consistente prevenir la circulación del virus en la línea (Philips 2002, Dee 2002). La vacuna puede
ser usada en este método para remover virus de campo de los sitios, que posteriormente serán llenados con cerdos negativos a PRRS sin la implicación del gasto del proceso de despoblación.

Al vacunar poblaciones enteras se debe tener cuidado en cambiar constantemente agujas entre animales y unidades (ejemplo corrales). Ya que el virus de PRRS de campo puede ser transmitido iatrogenicamente por sangre contaminada en las agujas. En adición la ropa contaminada puede también transmitir el virus de grupos infectados de cerdos a grupos no infectados. Las agujas deben ser cambiadas con la mayor frecuencia posible, por lo menos entre cada camada en maternidad y entre corrales en destete y engorda. Las botas y ropa debe ser cambiadas entre cada cuarto, de manera similar se recomienda tomar precauciones con el equipo de vacunación.

La vacunación se debe realizar por vía intramuscular, ya que las rutas intranasales u orales han sido inconsistentes en producir una sero conversión, así como en estimular inmunidad protectora (Kolb 1998). La vacunación intramuscular puede resultar en una respuesta celular T de mayor intensidad, relacionada con el rol protectivo de la inmunidad celular en la función de controlar la circulación del virus PRRS (Molitor 1996).

El control de PRRS en las áreas de destete y engorda se basará en la determinación del momento adecuado de la vacunación en poblaciones positivas, y el derivar el flujo de producción para prevenir la contaminación de poblaciones negativas. Al tomar la opción de la vacunación, esta se debe realizarse 4 semanas antes de la exposición, o seis semanas antes de la sero conversión, esto nos permitirá el pleno desarrollo de la inmunidad protectora previa a la exposición. La vacunación de los cerdos es una de las herramientas más desaprovechadas para el control de la circulación de PRRS en la línea de producción (Dufresne 2003), esto basado en los repetitivos beneficios biológicos y económicos del proceso.

Expectativas de un programa de control

Desarrollar expectativas razonables en tiempo y forma de un programa de control antes de iniciarlos nos ayuda en mantener el rumbo en los objetivos durante los periodos en donde nuevos aislamientos entren a la granja y aparezcan nuevamente signos clínicos. Tal vez el error más perjudicial en el control de PRRS es el alterar constantemente los programas como una respuesta emocional a eventos dados, en lugar de mantenerse con el compromiso de ser constantes al programa inicialmente diseñado, este debe de aplicarse y evaluarse por lo menos durante 6 meses, y deberá incluir criterios de medición, de tipo clínico, serológico y productivos.

La inconsistencia de la inmunidad de la piara es la primera oportunidad del virus de PRRS para circular y producir perdidas biológicas y económicas. Cambiar constantemente de programas de control es permitirá generar una inmunidad de hato inconstante y que el virus de PRRS circule en la población.

Cuando se tienen aislamientos altamente virulentos, se observaran mejoras económicas significativas, pero se pueden mantener algunos signos clínicos presentes, especialmente en el hato reproductor. Es importante notar que ninguno de estos aislamientos de alta virulencia se han identificado en México. Los esfuerzos en prevenir la introducción de una
nuevo virus nos ayudará a reducir el riesgo de que estas cepas sean un problema en nuestros entornos.

Resumen

El control de PRRS conlleva varios factores. Mientras que al principio un programa de control parece confuso e intimidante, este incluirá muchos componentes para el control de aspectos de salud y producción, que ya sabemos que son benéficos para evitar las pérdidas que el virus de PRRS produce, así como a otras enfermedades secundarias.

La presencia del virus de PRRS en una operación siempre nos alerta de aquellos pasos en falso de nuestro programa de control que le permiten al virus circular y ser biológicamente y económicamente dañino.

La bioseguridad, el manejo todo dentro-todo fuera, la sanidad y aplicación de conceptos de inmunidad de poblaciones son la clave para controlar PRRS en hatos positivos. Las casas de genética deben buscar un estatus constante libre de PRRS para prevenir el introducir nuevos virus a sus clientes. El monitoreo constante para valorar el estatus clínico y epidemiológico de PRRS en el sistema nos da evidencia tangible de estos programas. Donde es alcanzable la eliminación del virus de PRRS a niveles genéticos, nos va a generar un máximo de oportunidad para tener éxito en el control de PRRS en la cadena comercial y confianza en nuestra casa genética.