

"Genetic progress in pigs: innovating for the 2025 industry and markets"

Eveline Willems DVM AMVEC 2015 July 31st

Genetic progress

Data collection

Genetic progress

Genomic selection

Connecting data

Genotyping tools

Some terms and definitions in the era of genomics

SNP's

QTL = Quantitative Trait Loci = Gene

E.g. a piece of DNA with a positive effect on meat quality

SNP's define a position on the genome

Set of markers

Many SNP's = many markers = high density

Training

Markers explaining phenotypic performance:

1. Inside the causative mutation

2. Near the causative mutation

Recombination

Oocyte/sperm production: mixing DNA of grandparents (= Mendelian sampling / crossing-over)

Marker/SNP – QTL relation can break → repeat training

Genotyping

Different densities:

- Full genome sequence (~1M SNPs) ∡
- HD-chip (80k SNPs)
- LD-chip (10k SNPs)

Imputation

GWAS # of teats

highly significant in all phenotyped lines

Genomic selection

Connecting data

Added value

- More reliable breeding values
- Faster genetic improvement (30-40%)
- New selection traits
- More predictable performance in client herds

Reliable pedigree

Made with Made with Made with Made with a Trial

Specific Markers

E.g. total number born

More accurate relations ($A^{-1} \rightarrow H^{-1}$)

Classical breeding values (A⁻¹)

Traditional family relations (A⁻¹)

Traditional + DNA relations (H⁻¹)

More accurate relations = more accurate EBV

Added value

- More $\triangle G$, via higher accuracy
 - Late in life
 - Low heritability
 - Single sex
 - Expensive/difficult to measure
- Highest added value in dam lines

Reliability without genomics Dam line boar

Reliability breeding values

New breeding goal traits

Examples:

- Disease resistance requires infective Related topics: Safety & Legislation, Livestock, United States A team of US scientists have discovered a genetic to A team of US scientis
 - e.g. PRRS.
- Cured ham quality
 - e.g. Incarlopsa project
- Boar taint
 - e.g. Nador SNP-panel

What could bring this in relation with welfare and robustness traits?

What will the future bring?

Stem cell technology

Recipe:

- Kill semen producing cells of AI boar
- Replace with similar cells from high genetic value week old boar piglets
- Save 6 months (or so) of male generation interval

$$\Delta G_{year} = \frac{\sigma_H * r_{IH} * i}{L}$$

In vitro challenge using blood sample

Susceptibility to PMWS (Circo virus)

- Group 1: Higher susceptibility
- Group 2: Lower susceptibility

$$\Delta G_{year} = \frac{\sigma_H * r_{H} * i}{L}$$

Source: Metadis (2011)

Organoids

Source: Sato and Clevers. Science 340, 1190 (2013);

Gene editing?

• Ultimate goal: find animal with desired genotype for all SNP

Α

AA

а

Aa

- Existing variation!
- Healing!
- Still: ethical discussion (and high price...)
- Increases genetic standard deviation

Examples of use? F4 (Ecoli receptor) PRRS QTL

Questions?

